El momento de una fuerza aplicada en un punto P con respecto de un punto O viene dado por el producto vectorial del vector por el vector fuerza; esto es,
Donde
es el vector que va desde O a P.
Por la propia definición del producto vectorial, el momento es un vector perpendicular al plano determinado por los vectores y .
Dado que las fuerzas tienen carácter de vectores deslizantes, el momento de una fuerza es independiente de su punto de aplicación sobre su recta de acción o directriz.
La definición de momento se aplica a otras magnitudes vectoriales. Así, por ejemplo, el momento de la cantidad de movimiento o momento lineal, , es el momento cinético o momento angular, , definido como
El momento de fuerza conduce a los concepto de par, par de fuerzas, par motor, etc.
Donde
es el vector que va desde O a P.
Por la propia definición del producto vectorial, el momento es un vector perpendicular al plano determinado por los vectores y .
Dado que las fuerzas tienen carácter de vectores deslizantes, el momento de una fuerza es independiente de su punto de aplicación sobre su recta de acción o directriz.
La definición de momento se aplica a otras magnitudes vectoriales. Así, por ejemplo, el momento de la cantidad de movimiento o momento lineal, , es el momento cinético o momento angular, , definido como
El momento de fuerza conduce a los concepto de par, par de fuerzas, par motor, etc.
No hay comentarios:
Publicar un comentario